If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+32x-243=0
a = 3; b = 32; c = -243;
Δ = b2-4ac
Δ = 322-4·3·(-243)
Δ = 3940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3940}=\sqrt{4*985}=\sqrt{4}*\sqrt{985}=2\sqrt{985}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-2\sqrt{985}}{2*3}=\frac{-32-2\sqrt{985}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+2\sqrt{985}}{2*3}=\frac{-32+2\sqrt{985}}{6} $
| 5x=-2/5 | | (x+5)=4(4x+1)+76 | | 2.5x+x-5x=-3 | | 24x+6=90 | | 4(x-3)-24=11 | | 2(2b-1)=b+4 | | 6-3c=c-2 | | -4x-71-2=-2x+21 | | 2x-1+37=-2+3x | | 18+7x+44+104=180 | | 71+50+6x-1=180 | | 5x-8+67=99 | | 44+46=3x+42 | | 35+50=-3+x | | 105+2x-13=134 | | 90+30=x+46 | | 80+43=(-6x+51) | | 10—x=0.00001 | | 90+58=4x | | 84+70=(-4x-26) | | 81+31=12+10x | | 14a-12=30 | | 60+60+(-12+9x)=180 | | 4*x-32=0 | | 90+45+8x+21=180 | | 0.33=(40-x)/x | | 36+2-3x+46=180 | | 99+37+(-x-5)=180 | | 1/5x+6=9 | | 18x+4=17x+4 | | -x+20+(-10x)=70-6x | | 11+19+4x=5x+2 |